Pen Y Ffridd Saron **LL16 4SW**

Proposed Replacement Poultry Units

PLANT NOISE ASSESSMENT

Acoustics Report M2134/R01 31st January 2023

To: Ian Pick Associates Ltd Station Farm Office Wansford Road Nafferton Driffield East Yorkshire YO25 8NJ

Paul Smith BSc MIOA By:

1. Introduction

This acoustic report documents a plant noise assessment for the ventilation fans on the proposed replacement poultry units at Pen Y Ffridd, Saron; Figures 1 and 2.

The report is divided into the following sections:

- Section 2: Overview of the Development
- Section 3: BS4142:2014+A1:2019
- Section 4: Background Noise survey
- Section 5: Noise Impact Assessment
- Section 6: Conclusion
- Appendix A: Survey Data
- Appendix B: Calculations

2. Overview of the Development

The proposal is for 6 poultry units at Pen Y Ffridd, Saron, which will replace 8 existing poultry sheds; Figures 1 and 2.

The external plant for the proposed replacement poultry units will consist of ridge mounted extract fans, namely:

- Extract fan type: Hydor HRU710/6
- Sound pressure level: 59dB(A) at 3m, 45° lateral
- Total number of fans: 9 fans per shed
- Duct terminations: ridge mounted ducts arranged along the length of the shed, terminating 6.7m above ground

The closest dwellings, labelled A - D in Figure 2, are approximately between 130m - 180m from the proposed poultry units. Dwellings A – C will be fully acoustically shielded from the extract fan duct terminations (i.e., the line of sight is fully block) by local topography. There will however be an unobstructed noise path between the fans on Shed 6 and Dwelling D.

The proposed poultry units are within context of the sheds that they will replace, in both terms of operation and nature of noise emissions.

Figure 1. Elevations of the proposed replacement poultry units

Figure 2. Aerial view (source: www.google.com) showing footprint of proposed replacement poultry units, assessed dwellings and monitor positions

3. BS4142:2014+A1:2019

The plant noise assessment detailed in this report has been conducted in accordance of BS4142:2014+A1:2019 'Methods for Rating and Assessing Industrial and Commercial Sound'.

3.1 BS4142

BS4142 provides a methodology to assess the impact of industrial and commercial noise affecting dwellings, whereby the 'typical' background noise level is deducted from the industrial noise Rating Level (industrial noise corrected to account for the 'on-time' and noise character of the noise source; see sections 3.2 and 3.3 below). The following guidance is given based on the established difference:

- A difference of around +10dB or more is likely to be an indication of significant adverse impact, depending on context
- A difference of +5dB is likely to be an indication of an adverse impact, depending on context
- The lower the rating level is relative to the measured background sound level, the less likely it is that the specific sound source will have an adverse impact or a significant adverse impact. Where the rating level does not exceed the background sound level, this is an indication of the specific sound source having a low impact, depending on context

Context, as defined in BS4142, includes the consideration of the following factors:

- The absolute level of the noise emissions
- Character and level of the residual sound compared to the character and level of the Specific Level
- Sensitivity of the receptor and any acoustic design measures (e.g., façade sound insulation, use of mechanical ventilation and acoustic screening) incorporated at premises used for residential purposes

Where background noise and Rating Levels are low, BS4142:2014+A1:2019 states that 'absolute levels might be as, or more, relevant than the margin by which the rating level exceeds the background. This is especially true at night'. Low background noise and rating levels are not defined. However, in BS4142:1997 it states that 'background noise levels below 30dB and rating levels below about 35dB are considered to be very low'.

3.2 On-time correction

To take account of industrial/commercial noise sources that do not operate continually an 'ontime' correction is applied using:

- 10 log (r/r_{ref})

Where:

 $r_{\text{ref.}}$ = reference time (1hr between 07:00 – 23:00hrs and 15 minutes between 23:00 – 07:00hrs)

r = total 'on-time' during the reference period

Note that the shorter reference time interval between 23:00 – 07:00hrs is designed to penalise industrial/commercial noise events that occur during the night.

3.3 Noise character correction

BS4142 provides four noise character correction categories with associated penalties that must be applied when determining the Rating Level, namely:

- Tonality:
 - Not perceptible = 0dB
 - Just perceptible = +2dB
 - Clearly perceptible = +4dB
 - Highly perceptible = +6dB
- Impulsivity:
 - Not perceptible = 0dB
 - Just perceptible = +3dB
 - Clearly perceptible = +6dB
 - Highly perceptible = +9dB
- Intermittency: +3dB if the intermittency of operation is readily distinctive against the residual noise environment
- **Other:** +3dB applied if the specific sound is neither tonal or impulsive but features noise characteristics that are readily distinctive against the residual noise environment

4. Background Noise Survey

During the survey, the existing poultry units were not operational.

- Survey dates: Tuesday 31st August Wednesday 1st September 2021
- Weather; Table A2, Appendix A:
 - Precipitation: Dry
 - Wind Speed: highest recorded wind speed = 2.2m/s, with a median wind speed of 0m/sec
 - Wind direction:
 - 15:00 19:00hrs: E
 - 19:00 22:00hrs: NE
 - 22:00 03:00hrs: E
 - 03:00 08:00hrs: NE
 - 08:00 15:00hrs: E
 - The weather conditions will not have adversely affected the noise measurements.
- Noise monitor locations: With the microphones attached to tripod the noise monitors were located at Positions 1 and 2 as shown in Figure 1
- Weather station location: Weather station, mounted on a tripod, located at Bryn Golau, Saron (1.5km north west of Pen Y Ffridd); the wind speeds recorded will be equivalent to those at the noise measurement positions
- Equipment:
 - Weather Station: Kestrel type 4500
 - Noise monitors: Brüel & Kjær Type 2238 (Positions 1 & 2) and Brüel & Kjær Type 2260 (Position 3)
- Monitor configuration:
 - Weather station: Configured to measure the average wind speed and temperature over consecutive 10-minute periods
 - Noise Monitors: configured to measure consecutive 15-minute samples of noise.
- Calibration: Noise monitors calibrated before and after the survey using a Brüel & Kjær Type 4231 calibrator with no deviations found

All noise measurements are free-field. Full tabulated results are given in Table A1, Appendix A.

4.1 Survey observations

During the setting up and collection of the noise monitors, it was observed that the general underlying noise environment was very quiet, consisting of road traffic on the nearby roads and birdsong. As the poultry units were not operational, there was no contribution of the noise emissions from the existing extract fans.

4.2 Typical background noise level, LA90, at Dwellings A - D

Figures 3 and 4 show the variation in the measured maximum ($L_{Amax,F}$), ambient (L_{Aeq}) and background (L_{A90}) noise levels obtained at Positions 1 and 2 respectively.

Figure 3. Position 1 noise monitor data (free-field)

Figure 4. Position 2 noise monitor data (free-field)

As can be seen the background noise levels are generally slightly higher at Position 1. This will be due to its proximity to the adjacent roads.

From the survey data the typical background noise levels at Positions 1 and 2 have been established as:

- Position 1 (represents Dwellings A C):
 - Day (07:00 20:00hrs): LA90 26dB
 - Evening (20:00 23:00hrs): LA90 21dB
 - Night (23:00 07:00hrs): LA90 20dB
- Position 2 (represents Dwelling D):
 - Day (07:00 20:00hrs): LA90 25dB
 - Evening (20:00 23:00hrs): LA90 20dB
 - Night (23:00 07:00hrs): LA90 18dB

It should be highlighted that in all cases the above representative background noise levels are very low.

5. Noise Impact Assessment

5.1 Calculation of aggregate extract fan and transport noise at Dwellings A - D

The full calculations of the extract fan noise emissions are provided in Tables B1 - B4, Appendix B. The resultant BS4142 Rating and Assessment Level at Dwellings A - D are given in Table 1.

5.2 Source noise data

- Extract fan type: Hydor HRU710/6
- Sound pressure level: 59dB(A) at 3m, 45° lateral
- Total number of fans: 9 per shed
- Duct terminations: ridge mounted ducts arranged along the length of the shed, terminating 6.5m above ground

5.3 Extract fan operation

The temperature within the sheds is determined by a combination of the heat generated by the birds themselves, the external temperature and the ventilation provided by the extract fans.

To provide sufficient ventilation of the bird generated heat, as required to maintain the ideal internal operating temperature of around 20°C, up to 25% of the roof extract fans will be required to operate (either intermittently or on variable speed).

With the influence of the external temperature additional extract fans may be required in order to maintain the ideal operating internal temperature. Here the fans are operated in Stages, triggered with each 1°C rise above the ideal internal temperature. The highest Stage will typically only be triggered when the internal temperature rises above 23°.

The operation of 100% of the roof extract fans are only expected to occur during the day period when the external temperatures have the potential to be higher.

During the evening and night, when the external temperature will fall, there will be a corresponding decrease in the number of roof extract fans needed above those for bird generated heat alone; the expected percentage of ridge extract fans required to maintain the set temperature are 50% and 25% for the evening and night periods respectively.

For the assessment the calculations have therefore reviewed the following scenarios:

- Day (07:00 20:00hrs): 100% extract fans operating
- Evening (20:00 23:00hrs): 50% extract fans operating
- Night (23:00 07:00hrs): 25% extract fans operating

5.4 Derivation of aggregate Specific Level

The individual noise level of each extract fan has been calculated at Dwellings A - D; Figure 1. The following corrections have been applied to the source noise data:

- Directivity correction: correction to convert the fan noise data from the manufacturers stated level at 45° lateral to 90° lateral (the propagation angle for the assessed dwellings), determined using the corrections given in Duct Directivity Index Applications (Day H. Hansen C & Bennett B, Acoustics Australia 96 Vol. 37 December (2009) No. 3). For the calculation a frequency spectra has been used
- Reflections: 3dB added to account for reflections off the poultry shed roof
- Distance correction: 20 x log (d₁/d₀), where d₁ = distance between receptor and noise source and d₀ = reference distance.
- Shielding attenuation: Where the line of sight between the noise source and dwelling is fully blocked by a solid barrier (e.g., by the poultry units themselves or local topography) 10dB shielding correction has been applied in accordance with BS5228-1 2009.
- Ground absorption correction: ISO 9613-2: Attenuation of sound during propagation

 $A_{gr} = 4.8 - (2h_m/d)[17 + (300/d)]$

Where,

 h_m = mean height of the propagation path above ground

d = distance from source to receptor

In accordance with ISO 9613-2 the ground absorption correction is assumed to be zero when the line of sight of the noise source is partially or fully blocked by a solid body (i.e., when a shielding correction is applicable)

• Atmospheric attenuation: ISO 9613-2: Attenuation of sound during propagation outdoors, Formula 8:

$$A_{atm} = \alpha d/100$$

Where,

 α = is the atmosphere attenuation coefficient for a temperature of 10°C and 70% relative humidity

d = distance from source to receptor

In accordance with ISO 9613-2 the attenuation at 500Hz has been used as only the dB(A) value of the extract fans are known

• **On-time correction:** it has been assumed that the extract fans are operating continuously and consequently no 'on-time' correction has been applied

Tables B1 – B3, Appendix B provide the full calculations of the aggregate Specific Levels at the Dwellings A - C.

5.5 Source noise data

- Extract fans:
 - Extract fan type: Hydor HRU710/6
 - Sound pressure level: 59dB(A) at 3m, 45° lateral
 - Total number of fans: Building 1 8 fans, Building 2 9 fans
 - Duct terminations: ridge mounted ducts arranged along the length of the shed, terminating 6.5m above ground

5.6 Extract fan operation

The temperature within the sheds is determined by a combination of the heat generated by the birds themselves, the external temperature and the ventilation provided by the extract fans.

To provide sufficient ventilation of the bird generated heat, as required to maintain the ideal internal operating temperature of around 20°C, up to 25% of the roof extract fans will be required to operate (either intermittently or on variable speed).

With the influence of the external temperature additional extract fans may be required in order to maintain the ideal operating internal temperature. Here the fans are operated in Stages, triggered with each 1°C rise above the ideal internal temperature. The highest Stage will typically only be triggered when the internal temperature rises above 23°.

The operation of 100% of the roof extract fans are only expected to occur during the day period when the external temperatures have the potential to be higher.

During the evening and night, when the external temperature will fall, there will be a corresponding decrease in the number of roof extract fans needed above those for bird generated heat alone; the expected percentage of ridge extract fans required to maintain the set temperature are 50% and 25% for the evening and night periods respectively.

For the assessment the calculations have therefore reviewed the following scenarios:

- Day (07:00 20:00hrs): 100% extract fans operating
- Evening (20:00 23:00hrs): 50% extract fans operating
- Night (23:00 07:00hrs): 25% extract fans operating

5.7 Derivation of aggregate Specific Level

The individual noise level of each noise source has been calculated at Dwellings A - E; Figure 1. The following corrections have been applied to the source noise data:

- Directivity correction: correction to convert the fan noise data from the manufacturers stated level at 45° lateral to 90° lateral (the propagation angle for the assessed dwellings), determined using the corrections given in Duct Directivity Index Applications (Day H. Hansen C & Bennett B, Acoustics Australia 96 Vol. 37 December (2009) No. 3). For the calculation a frequency spectra has been used
- Reflections: 3dB added to account for reflections off the poultry shed roof
- Distance correction: 20 x log (d₁/d₀), where d₁ = distance between receptor and noise source and d₀ = reference distance.
- Shielding attenuation: Where the line of sight between the noise source and dwelling is fully blocked by a solid barrier (e.g., by the poultry units themselves or local topography) 10dB shielding correction has been applied in accordance with BS5228-1 2009.
- Ground absorption correction: ISO 9613-2: Attenuation of sound during propagation

$$A_{gr} = 4.8 - (2h_m/d)[17 + (300/d)]$$

Where,

- h_m = mean height of the propagation path above ground
- d = distance from source to receptor

In accordance with ISO 9613-2 the ground absorption correction is assumed to be zero when the line of sight of the noise source is partially or fully blocked by a solid body (i.e., when a shielding correction is applicable)

• Atmospheric attenuation: ISO 9613-2: Attenuation of sound during propagation outdoors, Formula 8:

A_{atm} = *αd*/100

Where,

 α = is the atmosphere attenuation coefficient for a temperature of 10°C and 70% relative humidity

d = distance from source to receptor

In accordance with ISO 9613-2 the attenuation at 500Hz has been used as only the dB(A) value of the extract fans are known

• **On-time correction:** it has been assumed that the extract fans are operating continuously and consequently no 'on-time' correction has been applied

Tables B1 – B3, Appendix B provide the full calculations of the aggregate Specific Levels at the Dwellings A - C.

5.8 Rating Level

To establish the Rating Level the following BS4142 character corrections have been applied to the Specific Level:

- Tonality:
 - Correction: 0dB
 - Reason: the proposed extract fans, as in common with other surveyed comparable units, are not expected to be tonal
- Impulsivity:
 - Correction: 0dB
 - Reason: The proposed extract fans will not contain an impulsive noise element such as bangs or a very sudden jump in sound output due to quick startup/change in fan speed.
- Intermittency:
 - o Correction: 0dB
 - Reason: It is possible on occasion that two or more extract fans will start/stop at the same time. However, the greatest expected increase/decrease in the aggregate fan noise is 3dB, which will only occur if the total number of fans operating doubles/halves. A 3dB increase/decrease is a just perceptible change in noise, which would not incur a BS4142 intermittency penalty (i.e., the change or 'intermittency' would not be 'readily distinctive against the residual noise environment').
- Other
 - Correction: 3dB
 - Reason: safety factor to allow for any potential 'other' noise characteristics of the fans.

The resultant aggregate Rating Levels are provided in Table 1

5.9 Assessment Level

We define Assessment Level = RL – min L_{A90} dB, where:

RL = aggregate Rating Level, dB(A); see Appendix B

 L_{A90} dB = established typical background noise level, L_{A90}

Table 1 provides the resultant Assessment Levels at Dwellings A - D.

Where the Rating Level is at parity with the typical background noise level (Assessment Level = 0dB) BS4142 states that the Specific Level will have a low impact depending on context; an adverse impact is indicated where the Rating Level is \geq 5dB and <10dB above the typical background noise level.

Table Asse	e 1. Typ ssment	bical ba Levels	ckgrou at Dw	nd and ellings <i>i</i>	calcula A - D	ated R	ating a	nd	
		Day:		E	vening	:		Night :	
	07:0	<u>0 - 20:0</u>)0hrs	20:0	0 - 23:0)0hrs	23:0	0 - 07:0	0hrs
		100%	🖁 roof		50%	roof		25%	roof
	~	fa	ns	~	fa	ns	~	fa	ns
	dE	oper	ating	dE	oper	ating	dE	oper	ating
Dwelling	Typical L _{A90}	Rating Level, dB	Assessment Level, dB	Typical L _{A90}	Rating Level, dB	Assessment Level, dB	Typical L _{A90}	Rating Level, dB	Assessment Level, dB
Α	26	23	-3	21	20	-1	20	18	-2
В	26	25	-1	21	23	2	20	20	0
С	26	24	-2	21	22	1	20	20	0
D	25	18	-7	20	16	-4	18	14	-4

As can be seen in Table 1, during both the day and night periods, the Assessment Level does not exceed 0dB at Dwellings A - D, which indicates a BS4142 low noise impact.

During the evening the highest Assessment Level is 2dB. As a 2dB change in noise level is imperceptible, this higher Assessment Level would be perceived as 0dB. We therefore conclude that the noise impact during the evening is also low.

Additionally, during the night (23:00 - 07:00hrs) both the typical background noise level and established Rating Levels are very low. We therefore consider, in accordance with BS4142, that the absolute noise levels at Dwellings A - D during the night maybe of more relevance in determining the noise impact than the Assessment Levels in this case.

We consider it is reasonable to assume that the occupiers of the nearest dwellings will be within their houses during the night period. A room with an open window will provide 10 - 15dB sound reduction.

Using the lower 10dB reduction the highest noise ingress would be 7dB(A). This extremely low noise ingress level is both below the lowest measured background noise level and >10dB below BS8233 L_{Aeq} 30dB noise ingress limits for bedrooms (noise limit applicable to road traffic noise and continuous operating plant).

We therefore conclude that during the night the extract fan noise ingress via an open window will result in a **negligible** noise impact.

5.10 Assessment uncertainty

With all calculations there is a +/-3dB level of uncertainty. This small level of uncertainty, which equates to a just perceptible change in noise level, has no meaningful impact on the assessment findings (note that the calculation includes a precautionary +3dB 'other' character penalty).

The representative background noise levels used in the assessment are very low; lower background noise levels are not expected.

The difference between halving or doubling the number of fans operating (e.g., 50% to 100%) is 3dB. With smaller changes in the number of fans operating, for example, 50% to 70%, the change in aggregate noise emissions will be less than 2dB; this represents an imperceptible change in noise.

We therefore consider the used percentage of fans as suitably robust for the purpose of the assessment; it reflects the percentage of fans used in poultry units as advised by both operators and experts and would not result in a perceptible change in noise emissions with a 20 - 25% increase/decrease in the number of fans operating.

6. Conclusion

A noise survey has been conducted to determine representative background noise levels at the nearest dwellings (Dwellings A - D, Figure 2) to the proposed replacement poultry units at Pen Y Ffridd, Saron; Figure 1 and 2.

The extract fan noise emissions as a result of the proposed replacement sheds have been assessed in accordance with BS4142:2014+A1:2019; see Appendix B for the calculations.

The determined noise impact during the day, evening and night periods is low; no mitigation measures are required.

Additionally, during the night the extract fan noise ingress via an open window will be below the existing underlying noise environment and >10dB below BS8233's noise ingress limits for bedrooms. We therefore conclude that during the night the absolute noise levels will result in a negligible noise impact.

On the basis that the operation of the extract fans on the proposed replacement poultry units will not result in an adverse noise impact at the nearest dwellings, we conclude that on noise grounds they are acceptable.

Table A	1. Noise	e monito	r data (f	ree-field)								
	F	Position	1	F	Position	2		F	Position	1	F	Position	2
Start Time	L _{Amax,F} dB	L _{Aeq} dB	L _{A90} dB	L _{Amax,F} dB	L _{Aeq} dB	L _{A90} dB	Start Time	L _{Amax,F} dB	L _{Aeq} dB	L _{A90} dB	L _{Amax,F} dB	L _{Aeq} dB	L _{A90} dB
15:45				73.4	40.0	23.5	03:45	39.7	26.3	21.0	35.2	19.1	17.5
16:00	57.5	37.4	29.0	53.9	33.3	24.5	04:00	42.4	29.4	21.0	41.7	26.4	18.0
16:15	54.7	35.7	29.0	57.2	36.5	24.5	04:15	38.1	28.0	20.5	38.0	22.3	18.5
16:30	80.0	48.3	27.5	53.8	35.5	25.0	04:30	38.7	23.8	19.5	42.5	22.4	19.0
16:45	53.4	34.2	26.5	83.1	62.8	24.5	04:45	37.2	22.0	19.5	41.5	23.1	17.5
17:00	58.4	36.3	27.5	79.9	53.7	22.5	05:00	34.4	21.1	19.5	31.4	19.0	18.0
17:15	46.7	30.0	24.5	52.0	33.9	21.5	05:15	64.9	37.9	19.5	38.8	19.4	17.5
17:30	58.0	36.7	25.0	46.4	26.2	21.5	05:30	43.7	24.6	20.5	45.1	22.2	18.0
17:45	46.3	30.8	26.0	50.1	30.7	22.5	05:45	62.5	35.6	20.5	46.4	27.4	19.5
18:00	61.1	38.1	24.5	56.5	34.9	23.0	06:00	54.7	30.1	22.5	57.2	30.3	19.0
18:15	62.4	37.2	23.0	64.5	35.2	24.0	06:15	63.0	40.4	24.5	70.4	42.4	21.0
18:30	41.5	26.1	23.0	70.6	36.6	21.5	06:30	46.2	30.4	25.0	55.4	32.9	21.0
18:45	56.6	33.9	23.5	56.0	28.9	20.5	06:45	50.0	32.3	26.0	67.2	37.3	23.0
19:00	53.9	34.0	23.0	55.4	36.5	21.5	07:00	49.2	32.6	26.0	57.7	37.1	24.5
19:15	63.8	37.5	22.5	59.3	36.1	21.0	07:15	55.0	34.3	29.0	58.0	33.8	24.0
19:30	48.8	27.8	22.5	61.9	33.3	20.5	07:30	57.7	36.4	27.5	52.4	31.5	25.0
19:45	50.9	30.1	22.0	63.4	37.3	21.5	07:45	54.6	33.1	26.5	67.1	44.6	26.5
20:00	51.6	29.7	22.0	42.9	24.0	20.0	08:00	65.8	41.2	28.5	75.0	49.0	25.0
20:15	50.7	28.2	21.5	46.1	28.8	20.0	08:15	60.1	33.2	25.5	47.0	30.3	25.5
20:30	48.0	30.5	21.5	48.7	25.2	20.0	08:30	62.6	37.5	26.5	71.1	37.1	26.0
20:45	42.5	25.8	21.0	53.7	32.4	19.0	08:45	61.1	36.2	27.0	51.1	32.1	25.5
21:00	59.8	33.7	21.5	38.5	22.9	19.5	09:00	76.5	45.5	27.0	54.6	30.9	26.5
21:15	67.7	39.5	21.5	44.0	24.4	20.0	09:15	59.7	36.6	26.5	53.3	33.4	28.5
21:30	38.5	23.3	21.0	53.9	23.6	19.5	09:30	43.7	29.2	25.5	60.4	34.3	29.0
21:45	39.3	23.6	21.0	38.4	22.4	18.5	09:45	61.0	35.9	25.0	46.6	30.7	28.5
22:00	41.2	26.8	21.0	34.9	22.5	19.0	10:00	46.7	31.6	25.5	49.3	33.0	29.0
22:15	53.6	32.5	21.5	41.9	24.5	19.0	10:15	65.0	40.8	25.5	52.5	33.1	29.0
22:30	31.8	21.5	20.5	44.5	27.2	19.0	10:30	61.1	42.0	25.5	44.9	37.5	35.5
22:45	32.8	22.2	20.5	35.3	22.9	17.5	10:45	60.8	35.7	26.0	54.9	38.9	35.5
23:00	34.6	23.2	20.5	35.6	20.7	17.5	11:00	80.9	52.3	29.0	59.6	38.2	35.0
23:15	35.6	23.6	21.5	41.8	23.4	17.5	11:15	68.8	44.2	28.0	60.8	40.3	35.0
23:30	34.4	27.0	23.0	30.2	18.9	17.0	11:30	63.0	40.8	27.0	65.2	44.9	28.0
23:45	38.3	27.3	24.0	37.1	21.4	18.5	11:45	57.9	36.8	27.0	59.2	38.4	25.0
00:00	38.5	29.3	23.5	36.9	22.2	18.5	12:00	59.4	38.3	29.0	48.3	33.1	24.0
00:15	41.5	28.9	23.5	33.4	22.1	18.0	12:15	60.9	37.3	28.0	58.5	35.2	26.0
00:30	33.8	26.2	23.0	37.8	22.5	18.0	12:30	52.9	34.5	26.0	55.5	37.3	26.0
00:45	48.7	29.1	23.0	39.9	22.3	18.5	12:45	54.9	31.2	25.5	57.5	33.6	23.5
01:00	34.0	27.8	24.0	43.9	26.3	19.0	13:00	41.7	28.9	24.5	62.9	33.9	22.5
01:15	37.8	26.8	22.5	29.9	19.8	18.0	13:15	53.1	32.8	24.5	66.4	35.9	24.0
01:30	44.9	26.2	22.5	39.8	20.7	18.0	13:30	54.6	37.1	29.5	56.4	33.4	25.5
01:45	39.8	25.7	22.0	34.9	20.4	18.0	13:45	57.9	36.0	27.5	56.6	37.0	29.5
02:00	35.6	24.1	21.5	33.5	21.5	18.5	14:00	71.6	49.6	29.0	72.7	41.3	25.0
02:15	33.5	23.8	20.5	41.4	20.1	17.5	14:15	50.3	32.2	27.5	73.1	50.0	25.0
02:30	34.2	24.5	22.0	40.8	20.1	17.0	14:30	48.5	31.6	26.5	57.7	29.5	23.5
02:45	37.7	27.2	21.5	42.1	20.5	17.5	14:45	61.4	37.4	25.0	42.5	27.3	23.5
03:00	37.6	28.5	23.5	44.6	22.7	17.5	15:00	54.5	36.7	27.5	69.2	47.3	23.5
03:15	36.0	24.9	21.0	45.7	26.2	20.5	15:15				70.0	39.2	24.5
03:30	29.4	21.5	20.0	31.3	19.2	17.5	1						

Table A	2. Weath	er statior	n data								
Stort	Wind	Tomp	Stort	Wind	Tomp	Stort	Wind	Tomp	Stort	Wind	Tomp
Time	Speed,	°C	Time	Speed,	remp, °⊂	Time	Speed,	°C	Time	Speed,	°C
Time	m/s	C	Time	m/s	C	Time	m/s	C	Time	m/s	C
15:40	0.8	13.3	21:30	0.0	12.3	03:20	0.0	10.2	09:10	0.0	11.3
15:50	1.7	13.2	21:40	0.0	12.6	03:30	0.0	10.0	09:20	0.0	11.2
16:00	1.5	13.3	21:50	0.0	12.4	03:40	0.0	9.7	09:30	1.3	11.4
16:10	1.4	13.3	22:00	0.0	12.4	03:50	0.0	9.4	09:40	0.7	11.7
16:20	0.9	13.2	22:10	0.0	12.3	04:00	0.7	9.7	09:50	1.4	11.6
16:30	0.9	13.1	22:20	0.0	12.2	04:10	0.0	9.5	10:00	1.0	11.7
16:40	0.7	13.3	22:30	0.0	12.2	04:20	0.5	9.2	10:10	1.1	11.7
16:50	0.0	13.4	22:40	0.0	12.4	04:30	0.0	9.3	10:20	0.0	12.1
17:00	1.3	13.4	22:50	0.0	12.6	04:40	0.0	9.3	10:30	0.0	12.1
17:10	0.0	13.5	23:00	0.0	13.2	04:50	0.0	9.0	10:40	1.0	12.3
17:20	0.0	13.5	23:10	0.5	13.0	05:00	0.0	8.9	10:50	0.8	12.2
17:30	0.0	13.8	23:20	1.2	12.8	05:10	0.0	7.5	11:00	1.0	12.9
17:40	0.4	14.1	23:30	1.4	12.9	05:20	0.0	8.1	11:10	1.5	13.2
17:50	0.7	13.8	23:40	0.7	12.5	05:30	0.0	7.8	11:20	0.7	13.0
18:00	1.1	13.8	23:50	0.0	12.7	05:40	0.0	9.2	11:30	1.4	13.1
18:10	0.9	13.7	00:00	0.7	12.4	05:50	0.0	9.5	11:40	0.0	13.1
18:20	0.0	13.8	00:10	0.0	12.5	06:00	0.0	9.6	11:50	1.0	13.2
18:30	0.0	13.5	00:20	0.5	12.5	06:10	0.0	9.9	12:00	0.0	13.4
18:40	0.0	13.4	00:30	1.1	12.6	06:20	0.0	9.9	12:10	2.2	12.6
18:50	0.9	13.2	00:40	1.0	12.2	06:30	0.0	9.8	12:20	0.7	12.5
19:00	0.6	13.1	00:50	1.0	12.5	06:40	0.0	10.2	12:30	0.8	12.5
19:10	0.0	13.0	01:00	0.5	12.2	06:50	0.0	10.0	12:40	0.6	12.8
19:20	0.0	12.9	01:10	0.0	12.5	07:00	0.0	10.0	12:50	0.4	13.3
19:30	0.0	13.0	01:20	0.6	12.3	07:10	0.0	9.6	13:00	0.9	13.2
19:40	0.0	12.6	01:30	0.4	12.3	07:20	0.0	9.8	13:10	1.1	12.7
19:50	0.0	12.8	01:40	1.1	12.0	07:30	0.0	10.4	13:20	0.4	13.0
20:00	0.0	12.5	01:50	0.6	12.3	07:40	0.0	10.4	13:30	0.6	13.1
20:10	0.0	12.9	02:00	0.0	11.9	07:50	0.0	10.9	13:40	0.6	13.0
20:20	0.0	12.9	02:10	0.0	11.8	08:00	0.0	10.6	13:50	0.7	13.2
20:30	0.0	12.6	02:20	0.0	11.8	08:10	0.0	10.9	14:00	0.7	13.8
20:40	0.0	12.5	02:30	0.0	12.0	08:20	0.5	11.0	14:10	0.5	13.8
20:50	0.0	12.5	02:40	0.4	11.9	08:30	0.8	11.1	14:20	1.8	13.4
21:00	0.0	12.8	02:50	1.0	11.3	08:40	0.0	11.0	14:30	0.7	14.1
21:10	0.0	12.5	03:00	0.6	10.6	08:50	0.0	11.1	14:40	1.8	14.0
21:20	0.0	12.5	03:10	0.0	10.5	09:00	1.0	11.1	14:50	1.1	14.1

31st January 2023

Not Not					ဖ အ	70	о С Т	J 4	5 N ·	<u>ں</u> ح	c 00	7	о (רט -	ں 4	v N -	→ F	an					Ext		Tab
e 1: Ass e 2: Ass					Gro	ound	ab dE	sor 3	otior	۱,	Dir	rec	t di	sta	inc	e, m							ract Fa		le B1. (
sumed c					0.0 0.0	0.0	0.0	0.0	0.0	0.0	179.6 101 6	177.6	175.6	173 7	171 7	168.0	166.2	Shed		[C] Re	[B] dire		ns: Hyd		alculati
only odc only 2, 5	7	Eve	Day		0.0 0.0	0.0	0.0	0.0	0.0	0.0	200.5	198.7	196.9	195.2	193 5 193 5	190.2	188 A	Shed	[A] - [B]	eflectior	∋ctivity c	[>	lor HRU		on of e
and 8	light (2	ning (2	(07:00		0.0 0.0	0.0	0.0	0.0	0.0	0.0	222.7	221.1	219.5	218.0	216.5	213.5	212 1	Shed	+ [C] L	ı off pou	orrectio] Lp at :	710/6		xtract ta
red roo number	3:00 - 0	20:00 - 2	- 20:00		0.0 0.0	0.0	0.0	0.0	0.0	0.0	245.8 247 3	244.4	243.0	241 6	230.0	237.5	236.3	Shed	_p at 90°	ıltry she	n (45° t	3m, 45°			n Kaun
f fans o ed roof	7:00hrs	23:00hr	hrs): 10		0.0 0.0	0.0	0.0	0.0	0.0	0.0	269.8	268.4	267.1	265.8	203.4 264 6	262.2	261 D	Shed	lateral:	d roof:	o 90°):	lateral:			а гелек
peratin <u>c</u> fans op	s): 25%	s): 50%	0% root		0.0 0.0	0.0	0.0	0.0	0.0	0.0	294.2	293.0	291.8	290.6	200.4 289 л	287.3	c 98c	Shed	64	ω	0	61	63		י מו שע נ
a eratino	roof ex	roof ex	f & gabl		a	Atm tten	osp Jati	ohei on,	ric dB		Dist	tan	ce c	co IB	rre	ction	,		59	ω	1.5	57	125	Q	
on nron	ctract fa	ctract fa	e end e		0.3 0.3	0.3	0.3	0.3 3	0.0 3 3	0.3	ວ ເວ ກ ເວ ກ ເວ	35.4	35.3	300	35.	35.0	34 0	Shed	55	ω	ω	55	250	ctave Banc	
insed re	ins ope	ins ope	xtract f		0.4 0.4	0.4 0.4	0.4	0 c 4 4	0.0	0.4	ა მ. ა. წ. ა. წ.	36.4	36.3	36.3	36.2	36.0	36 D	Shed	51	ω	4.5	52	500	I Centre Fr	
inlacem	rating -	rating -	ans op		0.4 0.4	0.4 0.4	0.4	0.4 4	0.4	0.4	37.4	37.3	37.3	37.2	37.1	37.0	37 0	Shed	48	ω	9	54	1k	equency, H	
ent she	Note 2	Note 1	erating	3S4142	0.5 0.5	0.5 0.5	0.5	0.5 С.5	00 ກິເກີ	0.4	ა	38.2	38.2	38.1	38 J	38.0	4	Shed	44	ω	11	52	24	z	
ds	Spe Ra	Spe Ra	Spe Ra	charac	0.5 0.5	0.5 0.5	0.5	0.5 С.5	00 ກູ່ເກ	0.5	39.1	39.0	39.0	39.0	38.0 9.0 9	38.8 0.8	38.8	Shed	37	ω	18	52	4		
	cific Le	cific Le Iting Le	ecific Le	ter corr	0.6 0.6	0.6	0.6	0.6	0 0.0 1 0	0.5	39.8	39.8	39.8	397	39.7 39.7	39.6	90 6 0	Shed	53.5			59	dB(A)	
	vel, dB vel, dB	vel, dB vel, dB	vel, dB vel, dB	ection	S leve	oun el at	d pi dwe	ress ellin	sure g, d	в	а	tte	Shie nua	eld atic	ing on,	dB									
					7.6 7.5	7.8 7.7	7.9	8 0 0 -	0 0 0 2 2	00 30	10	10	10	100	100	10	10 -	Shed							
					6.6 5	6.7	6.9	6.9	7.1	7.2	10	10	10	100	100	10	10	Shed							
	18 12	1. 20	20	ω	5.7 5.6	5.7	5.9	5.0 0	ຄ.ດ ດີ	6.1	1 0 0	10	10	100	100	<u>, 1</u>	1 Ω	Shed							
					4.8 4.7	4.9 4.8	4.9	თი 0 0	י ה ה ס - א	<u>л</u> -	10	10	10	100	100	<u>.</u>	10 4	Shed							
					ა ა .9	4.0 0	4.0	+ 4 	4.2	4.2	10	10	10	100	100	<u>, 1</u>	10 ⁵⁷	Shed							
					ω ω 	ω ω 	3 3 2	ω υ ω υ	ວ ເມ ວ ເມ	3 4	3 1 0	10	10	10	100	200	10	Shed							

MATRIX ACOUSTIC DESIGN CONSULTANTS

Not					9	8 ~	ı م	с т.	J 4	s ک	- 1	9	- oc	√ 0	ກບ	4 I	.ω	Ν	-	Fa	an					Ext		Tab
e 1: As: e 2: As:					G	irou	nda	abs dB	sorp	otio	n,	C	Dire	ect	dis	tai	nce	e, n	ı							ract Fa		le B2. (
sumed (0.0	0.0	0.0	0.0	0.0	0.0	0.0	131.6	131 6	131.0	132.1	132.3	132.7	133.1	133.6	_	Shed		[C] R	[B] dir		ns: Hyc		Calculat
only odd only 2. 5	7	Eve	Day		0.0	0.0	0.0	0.0			0.0	158.6	1586	158.7	128.0	159.2	159.5	159.9	160.3	2	Shed	[A] - [B	eflectior	ectivity o	4]	for HRU		ion of e
and 8	light (2	ening ((07:00		0.0	0.0	0.0	0.0			0.0	185.6	1856	185.7	100.0	186.1	186.4	186.7	187.0	ω	Shed] + [C] L	ו off po	correctic	\] Lp at	1710/6		xtract fa
red roo	3:00 - 0	20:00 - :	- 20:00		0.0	0.0	0.0	0.0	0.0	0.0	0.0	212.6	2126	212 6	212.9	213.0	213.2	213.5	213.8	4	Shed	_{-p} at 90°	ultry she	n (45° t	3m, 45°			ın Ratin
if fans o red roof)7:00hr:	23:00hr	hrs): 10		0.0	0.0	0.0	0.0			0.0	239.6	239 6	2396	230.8	240.0	240.2	240.4	240.7	Сī	Shed	lateral:	ed roof:	:0 90°):	lateral:			g Level:
perating fans or	s): 25%	s): 50%	0% roo		0.0	0.0	0.0	0.0	0.0	0.0	0.0	266.6	266.6	266 6	2002 8.002	266.9	267.1	267.3	267.6	0	Shed	64	ω	0	61	63		s at Dwe
g þerating	o roof ex	o roof ex	f & gab			A atte	tmo enu	osp atio	her on,	ic dB	5	Di	sta	anc	e d	cor B	rec	tio	٦,			59	ω	1.5	57	125	0	elling B
	xtract fa	xtract fa	le end e		0.3	0 0 .3 3	0.3	0.3	ο. ω.ω	ာ O ၁ ယ	0.3	32.8	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32.9	32.9	32.9	33.0	-	Shed	55	ω	ω	55	250	ictave Ban	
nosed re	ans ope	ans ope	extract		0.3	0 0 .3 3	0.3	0.3	ο. ω.ω	ာ O ၁ ယ	0.3	34.5	за 1.0	зся 34 г. 5 с	ა ა 4.0 л 0	34.5	34.5	34.5	34.6	2	Shed	51	ω	4.5	52	500	d Centre Fi	
nenelne	rating -	rating -	fans op	_	0.4	0.4 0.4	0.4	0.4	0.0	0.4	0.4	35.8	300	33 C 37 C 8 C	ы л. α α	35.9	35.9	35.9	35.9	ω	Shed	48	ω	9	54	1k	requency,	
ient che	Note 2	Note 1	erating	3S4142	0.4	0.4 0.4	0.4	0.4	0.0	0.4	0.4	37.0	37.0	37.0	37.0	37.0	37.0	37.0	37.1	4	Shed	44	ω	11	52	¥	Hz	
ds	Spe Ra	Spe Ra	R	charac	0.5	0.5 0.5	0.5	0.5 С.5	0 C	ວ 0 ກ ບາ	0.5	38.0	38.0	38 O	20 20 1	38.1	38.1	38.1	38.1	Сī	Shed	37	ω	18	52	ŧ		
	ecific Le ating Le	ecific Le ating Le	ecific Le ating Le	ter cor	0.5	0.5 0.5	0.5	0.5 С.5	0 C	ວ 0 ກ ບາ	0.5	39.0	39.0	39 O	30 D	39.0	39.0	39.0	39.0	6	Shed	53.5			59	dB	(A)	
	vel, dB vel, dB	vel, dB vel, dB	vel, dB vel, dB	rection	le	Sou vel a	und at d	pr lwe	ess ellin	g, o	e dB		ati	SI ten	hie ua	ld iı tio	ng n, i	dB										
					10.4	10.4 10.4	10.4	10.4	10.3	10.3	10.3	10	10	100		10	10	10	10	-	Shed							
					8.7	8.7 8.7	8.7	8.7	8.7	8.7 7	9.8	10	10	100		10	10	10	10	2	Shed							
	2 1	ŅN	NN	6	7.3	< د. 7 د. 3	7.3	7.3	7 - 3 -3	7.3	7.2	10	10	100	32	10	10	10	10	ω	Shed							
	7 0	30	σN		6.1	6. . 1	6.1	6.1	ი. 	n 6.0	6.0	10	10	<u> </u>	32	10	10	10	10	4	Shed							
					5.0	5.0 0	5.0	5.0	ол 0 О С	יי גיי ס ס	5.0	10	33	<u> </u>	52	50	10	10	10	сл	Shed							
					4.0	4.0 0	4.0	4.0	4 4 0 0	4.0	4.0	10	3	100	50	10	10	10	10	6	Shed							

Note					9	∞ -	9 0	G	4	ωı	~ -	<u>ہ</u>	œ	7	ი ი	U.	₽ (ωı	~ ~	F	an					Extr		labi
1: Ass					G	βroι	und	ab dE	so 3	rpti	ion,		Dir	ect	di	sta	and	ce,	m							act Fai		
sumed c					0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	144.5	147.5	150.5	153.5	156.5	1595	162.5	168.5 165.5	-	Shed		[C] Re	[B] dire		ıs: Hyd		วสเว็บเสเ
only odd	z	Eve	Day		0.0	0.0	0 0 0 0	0.0	0.0	0.0	0.0	144.8	147.8	150.7	153.7	156.7	159 7	162.7	168.7 165.7	2	Shed	[A] - [B]	eflection	ectivity c	[A	or HRU		
numbe	light (2:	ning (2	07:00		0.0	0.0	0 0 0 0	0.0	0.0	0.0	0.0	150.0	152.8	155.7	158.6	161.5	164 4	167.3	173.1 170.2	ω	Shed	+ [C] L	off pou	orrectio] Lp at 3	710/6		לוומטו ומ
red roof	3:00 - 0	0:00 - 2	- 20:001		0.0	0.0	0 0 0 0	0.0	0.0	0.0	0.0	159.7	162.4	165.1	167.8	170.6	1733	176.1	181.6 178.8	4	Shed	_o at 90°	iltry she	n (45° to	3m, 45°			
fans of	7:00hrs	3:00hrs	ırs): 10(0.0	0.0	0.0 0	0.0	0.0	0.0	0.0	173.0	175.5	178.0	180.6	183.1	1857	188.3	193.4 190.8	5	Shed	lateral:	d roof:	:(°00 c	lateral:			ן רבעבוט
perating): 25%	s): 50%	0% roof		0.0	0.0	0 0 0 0	0.0	0.0	0.0	0.0	189.3	191.6	193.9	196.2	198.6	200.9	203.3	208.1 205.7	6	Shed	64	ω	0	61	63		
	roof ex	roof ex	& gable			ر att	Atm tenu	osp Jati	ohe ion	eric , d	B	C	ist	an	ce (co IB	rre	ect	ion,			59	ω	1.5	57	125	0	
) 5 5 5 5	tract fa	tract fa	e end e		0.3	0.0 .3	၀၀ သယ	0.3	0.3	0.3	0.0 	33.7	33.8	34.0	34.2	34 3 34 3	за 5	34.7	34.8	-	Shed	55	ω	ω	55	250	tave Band	
	ns opei	ns opei	xtract fi		0.3	ο	၀ ၀ သ ယ	0.3	0.3	0.3	ο ο ω ω	33.7	33.8	34.0	34.2	34.4	за 74.5	34.7	35.0 34.8	2	Shed	51	ω	4.5	52	500	Centre Fro	
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rating -	rating -	ans ope	B	0.3	0.0 .3	၀ ၀ သ ယ	0.3	0.3	0.3	ი ი ა ა	34.0	34.1	34.3	34.5	34 6	34.8	34.9	335 5.2	ω	Shed	48	ω	9	54	1k	equency, H	
-	Note 2	Note 1	erating	S4142	0.3	0.0 .3	၀ ၀ သ ယ	0.3	0.3	0.3	ი ი ა ა	34.5	34.7	34.8	35.0	30 57 4	350	35.4	ယ ယ ၁	4	Shed	44	ω	11	52	2k	Ż	
<u>,</u>	Spe Ra	Spe Ra	Spe Ra	charact	0.3	0.0 .3	၀၀ သယ	0.3	0.4	0.4	0.0	35.2	35.3	35.5	35.6	35.7	358	36.0	36.2	თ	Shed	37	ω	18	52	4k		
	cific Lev ting Lev	cific Lev ting Lev	citic Lev ting Lev	er corr	0.4	0.4	0.0 4 4	0.4	0.4	0.4	0.4	36.0	36.1	36.2	36.3	36.4	2023	36.6	36.8 36.7	6	Shed	53.5			59	dB	(A)	
	/el, dB /el, dB	/el, dB /el, dB	/el, dB /el, dB	ection	le	So vel	at	d pi dwo	res ellii	su ng,	re , dE	3	a	S tter	hie hua	əld atio	ing on	g , d	В									
					9.6	9.4	9.0 0	8.9	8.7	о Сл	8.4 .4	10	10	10	10	10	10	10	100	-	Shed							
					9.6	9.4 9.4	9.0 0	8.8	8.7	о Сл Сл	ω α ω κ	10	10	10	10	10	10	10	1 0 0	2	Shed							
	1. 20	1(22	222	ω	9.2	9.1 9.1	8.7 9	8.6	8.4	α .ω	00 ~ .4 .9	10	10	10	10	10	10	10	100	ω	Shed							
					8.7	оо Сл	8 8 4 2	8.1	7.9	7.8	7.7	10	10	10	10	10	10	10	100	4	Shed							
					8.0	7.8	7.6	7.4	7.3	7.2	7.4 7.4	20	10	10	10	10	10	10	100	თ	Shed							
					7.1	7.0	ກ ດ ໑ ຒ	6.7	6.6	6. 5	ი. .4 ა	30	10	10	10	10	10	10	100	6	Shed							

31st January 2023

					<u>ه</u> ی	70	ა თ	4	ωı	~ ~	ဖ၀	o -	4 C	ഗ	4	ω	∾ →	Fa	an					Extra	
					Gro	und	ab dE	iso 3	rpt	ion,	D	ire	ect	dis	tan	ce	, m							ict Far	
					0.0 0.0	0.0	0.0	0.0	0.0		317.3	0470	317.9	318.6	319.0	319.4	320.4 319.9	-	Shed		[C] Re	[B] dire		וs: Hyd	
7	Eve	Day			0.0 0.0	0.0	0.0	0.0	0.0		290.1 290.4		291.4	291.8	292.3	292.8	293.8 293.3	2	Shed	[A] - [B	eflectior	ectivity o	4]	lor HRU	
light (2	ning ((07:00			0.0 0.0	0.0	0.0	0.0	0.0	0.0	263.5	200	264.7	265.1	265.6	266.1	267.3 266.7	ω	Shed] + [C] L	ı off pou	correctic] Lp at	710/6	
3:00 - 0	20:00 -	- 20:00			0.0 0.0	0.0	0.0	0.0	0.0	0.0	236.7		237 5	238.5	239.0	239.6	240.9 240.2	4	Shed	_{-p} at 90°	ultry she	n (45° t	3m, 45°		
)7:00hr:	23:00hi	hrs): 10			0.0 0.0	0.0	0.0	0.0	0.0	00	209.9		210.9	211.9	212.5	213.2	214.6 213.9	თ	Shed	lateral:	ed roof:	to 90°):	lateral:		
s): 25%	's): 50%	0% roo		ĺ	3.7 3.7	3.7 3.7	3.7 1	3.7	3.7	3.3 7.7	183.2	402	184.3	185.5	186.2	186.9	188.5 187.7	ი	Shed	64	ω	0	61	63	
o roof e	o roof e	f & gab			a	Atm tten	iosp uati	ohe ion	eric ı, d	В	Dis	sta	inc	e c dE	orre 3	ect	tion,			59	ω	1.5	57	125	0
xtract fa	xtract fa	le end (0.6	0.6	0.6	0.6	0.6	0.6	40.5	а С с Л с	40.5	40.5	40.5	40.5	40.6 40.6	_	Shed	55	ω	ω	55	250	ctave Ban
ans ope	ans ope	extract			0.6	0.6	0.6	0.6	0.6	0.6	39.7 39.7	2 0 0 7 - 7	39.7	39.8	39.8	39.8	39.8 39.8	2	Shed	51	ω	4.5	52	500	d Centre F
rating -	rating -	fans op			0 0 .5 5	0.5 5	0 0 1 ປົ	0.5	0.5	0 0 5 0	აი.ყ 38.9		30 0 0 0	38.9	38.9	39.0	39.0 39.0	ω	Shed	48	ω	9	54	1k	requency,
Note 2	Note 1	erating		3S4142	0.5 0.4	0.5 5	0 0 1 ປົາ	0.5	0.5	0 0 5 5	30.0 37.9		38.0	38.0	38.0	38.0	38.1 38.1	4	Shed	44	ω	11	52	2k	Ηz
R	R	R	Sn	charac	0.4 0.4	0.4 0.4	0.4	0.4	0.4	0.4	36.9	3 0 0 0	36.0 0.2	37.0	37.0	37.0	37.1 37.1	თ	Shed	37	ω	18	52	4k	
ecific Le ating Le	ecific Le ating Le	ating Le	acific I e	ter cor	0 0 .3 3	0.4 0.4	0.4	0.4	0.4	0.4	35.7	ч с 1 с	ы Сло Сло	ວ ເວ ກີ ເວິ ວ ເວ	35.9	35.9	36.0 35.9	6	Shed	53.5			59	dB(A)
vel, dB vel, dB	vel, dB vel, dB	vel, dB	vel dR	rection	S leve	oun el at	d pi dw	res elli	ssu ng,	re dB	á	att	SI ten	niel uat	din ion	g 1, c	IB								
					2.4 2.4	2.4 2.4	2.4	2.4	2.3	2 2 3 3	10	5.0	10	10	10	10	10 10	1	Shed						
					3.2 3.2	3.2 3.2	3.2 2	3.2	3.2	ω <u>ω</u> 	10	5.0	10	10	10	10	10 10	2	Shed						
د ب					4 4 	4 4 .1	4.4	4.1	4.0	4.0	10	5.0	10	10	10	10	10	ω	Shed						
	တ ယ	<u></u> о о	רט	~	თ.თ 	5 5 	י ט ס ס	5.0	5.0	5.4 0.9	10	5.0	10	10	10	10	10	4	Shed						
					6.2 6.2	6.2	0.0 . 1	6.1	6.1	6.0	10	5.0	10	10	10	10	10	თ	Shed						
					13.7 13.8	13.7	13.6	13.6	13.5	 ມີ ເມ ຫຼັງ ຫຼັ	00	5 0	00		0	0	00	6	Shed						

MATRIX ACOUSTIC DESIGN CONSULTANTS